The materials are for the course BPH-605 Pharmaceutical Biotechnology of VI semester B.Pharm. The materials belong to Unit-3

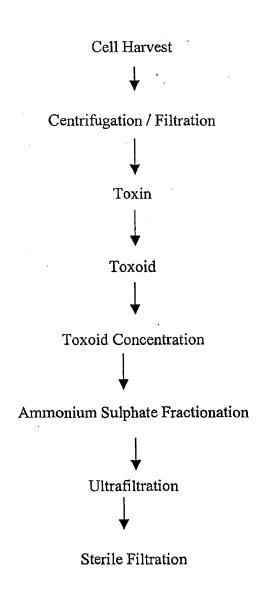

HOW DID THEY MAKE DIPHTHERIA ANTITOXIN? SCIENTISTS LEARNED TO HARNESS THE IMMUNE SYSTEMS of some animals to produce antitoxin serums to use as medicines. Diphtheria antitoxin was one of these medicines. Doctors used diphtheria antitoxin to treat and prevent diphtheria, an often deadly childhood disease. Scientists grow (2) Next, researchers inject (3) Scientists collect (4) Then, researchers blood from the purify the antitoxin diphtheria-causing horses with the diphtheria bacteria in the laboratory toxin. As an immune response, horses and separate serum for use as a and harvest its toxin. the animals' blood produces out the antitoxin medicine for people. diphtheria antitoxin. rich serum. toxin antitoxin medicine antitoxin in the diphtheriabloodstream causing bacteria

TABLE 43.1. A comparison among the different types of hypersensitivity

Feature	Hypersensitivity Type			
	Type I	Type II	Type III	Type IV
Nature of antigen Antibody (Ab) involved	Soluble IgE	Cell surface-bound IgG	Soluble IgM	Soluble Nil
Type of immune response	Humoral	Humoral	Humoral	Cellular
Effector molecules	Histamine and other biologically active molecules	Membrane-attack complex, complements C3a, C4a and C5a	Neutrophils	Various cytokines secreted by activated Tc cells
Mechanism	B cells Activated by allergen	B cells Activated by antigen	B cells Antigen activation	T _n 1 cells Antigen activation
	Secrete IgE	Secrete IgG	Secret IgM	Secrete cytokines
	IgE binds to Fc receptors on mast cells and blood basophils Second exposure	IgG binds cell surface- bound antigen • Activation of Tc	IgM interacts with antigen to form immune complex	Activation of macrophages and Tc cells
	Allergen cross-links IgE Activated mast cells and blood basophils secrete vasoactive amines	Or Activation of complement system Tc cells secrete	Activation of complement system Inflammatory response; massive infiltration by	Phagocytosis by macrophages Various cytokines secreted by Tc cells
	Smooth muscle contraction	various cytokines leading ultimately to cell death • Activated	neutrophils	Celjular damage
	 Increased vascular permeability Vasodialation 	complement system leads to cell death		
Examples	Systemic anaphylaxis; localized anaphylaxis; e.g., hay fever, asthma, hives, food allergies	Blood transfusion reactions, ery- throblastosis foetalis, autoimmune haemolytic anaemia	Serum sickness, rheumatoid arthritis, systemic lupus erythmatus	Contact dermatitis, graft rejection, tubercular lesions

METHOD OF PREPARATION OF TOXOIDS

A **toxoid** is an inactivated toxin (usually an exotoxin) whose toxicity has been suppressed either by chemical (formalin) or heat treatment, while other properties, typically immunogenicity, are maintained. Toxins are secreted by bacteria, whereas toxoids are altered form of toxins; toxoids are *not* secreted by bacteria. Thus, when used during vaccination, an immune response is mounted and immunological memory is formed against the molecular markers of the toxoid without resulting in toxin-induced illness. Such a preparation is also known as an **anatoxin**. There are toxoids for prevention of diphtheria, tetanus and botulism. The following flow chart outlines the preparation of Toxoids.

IMMUNE STIMULATION AND IMMUNE SUPPRESSION

1.IMMUNE STIMULATION

Immune stimulation refers to stimulation of Immune system by an external source. The stimulation offers protection against infections and cancer. Our Immune system can be stimulated by administration of Antigens, Adjuvants and Endogenous substances like Female Sex Hormones. The Antigens are administered in the form of a Vaccine. Antigens produce specific Immune stimulation, while Adjuvants and endogenous substances produce non specific Immune stimulation. Apart from these substances some chemicals (e.g. Deoxy Cholic Acid), Probiotics like certain Lactobacillus bacteria and some herbs possess Immuno stimulant property.

2.IMMUNE SUPPRESSION

Immune suppression orImmunosuppression is a reduction of the activation or <u>efficacy</u> of the <u>immune system</u>. Some portions of the immune system itself have immunosuppressive effects on other parts of the immune system, and immunosuppression may occur as an adverse reaction to treatment of other conditions.

In general, deliberately induced immunosuppression is performed to prevent the body from rejecting an organ transplant. Additionally, it is used for treating graft-versus-host disease after a bone marrow transplant, or for the treatment of auto-immune diseases such as systemic lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, or Crohn's disease. This is typically done using medications, but may involve surgery plasmapheresis or radiation. A person who is undergoing immunosuppression, or whose immune system is weak for some other reasons (chemotherapy or HIV), is said to be immunocompromised.